ذ: عبد الرحمان فقري

تمـريــن 1:

نعتبر المتتالية $\left(u_{n}\right)$ المعرفة كمايلي:

$$u_{n+1} = \frac{5u_n - 1}{u_n + 3}$$
 $u_0 = 2$

$$\left(\forall n\in IN
ight)$$
 , $u_{n}\neq 1$: بين أن (1

$$v_n = \frac{1}{u_n - 1}$$
: نضع IN نكل (2

أ_ بين أن (v_n) متتالية حسابية محددا أساسها وحدها الأول. ب ب أحسب v_n ثم u_n بدلالة v_n

تمـريــن 2:

نعتبر المتتالية (u_n) المعرفة كمايلي:

$$u_{n+1} = \frac{1}{4}u_n + \frac{3}{8}$$
 $u_0 = \frac{2}{3}$

$$(\forall n \in IN), \frac{1}{2} \le u_n \le \frac{2}{3}$$
 : بين بالترجع أن (1

. تناقصية (
$$u_n$$
) تناقصية (2

(3) لتكن (v_n) المتتالية المعرفة كمايلي:

$$(\forall n \in IN)$$
 , $v_n = 3(2u_n - 1)$

أ_ بين أن (v_n) متتالية هندسية محددا أساسها وحدها الأول. v_n بدلالة u_n ثم استنتج u_n بدلالة v_n . v_n بحاية u_n .

تمـريــن 3 :

نعتبر المتتالية (u_n) المعرفة كمايلي:

$$u_{n+1} = \sqrt{u_n + 12}$$
 $u_0 = 5$

- $\left(\forall n\in IN
 ight)$ $u_{n\geq 4}$: اثبت أن (1
 - $.(u_n)$ أدرس رتابة (2
 - (3) بين أن

$$\left(\forall n \in IN \right) \quad 0 \leq u_{n+1} - 4 \leq \frac{1}{4} \left(u_n - 4 \right)$$
 وأن المتتالية $\left(u_n \right)$ متقاربة.

$$(\forall n \in IN)$$
 $u_n - 4 \le \left(\frac{1}{4}\right)^n$: استنتج أن

تمرين 4:

و $\left(v_{n}\right)_{n\in IN^{\bullet}}$ متتالیتان معرفتان کما یلي: $\left(u_{n}\right)_{n\in IN^{\bullet}}$

$$\mathbf{v}_{n}=\frac{\mathbf{n}}{\sqrt{n^{2}+n}}$$
 و $\mathbf{u}_{n}=\frac{\mathbf{n}}{\sqrt{n^{2}+1}}$ (\mathbf{v}_{n}) و \mathbf{u}_{n}) بين أن كلا من المتتاليتين (\mathbf{u}_{n}) و (\mathbf{u}_{n}) متقار بتان و لهما نفس النهاية.

2) لكل n من • IN نضع :

$$\begin{split} w_n &= \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \cdots + \frac{1}{\sqrt{n^2+n}} \\ v_n &\leq w_n \leq u_n \quad : \text{IN}^\bullet \text{ in all its possible } n \text{ of } n \text{ o$$

تمـريــن 5:

و $\left(v_{n}
ight)$ متتالیتان معرفتان کما یلي:

$$\begin{cases} v_0 = 12 & \text{if } v_0 = 1 \\ v_{n+1} = \frac{u_n + 3v_n}{4} & \begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n + 2v_n}{3} \end{cases} \end{cases}$$

 $\mathbf{w}_{n} = \mathbf{v}_{n} - \mathbf{u}_{n}$: IN نضع لکل n نضع لکل

- بين أن $\left(w_{n}\right)$ متتالية هندسية محددا أساسها وحدها الأول.
 - $\lim_{v \to +\infty} w_n$ بدلالة n ثم أحسب w_n بدلالة
 - اً بين أن $\left(u_{n}\right)$ متتالية تزايدية و $\left(v_{n}\right)$ متتالية تزايدية و $\left(u_{n}\right)$

. ب _ أستنتج أن $\left(u_{n}\right)$ و $\left(v_{n}\right)$ متقاربتان

- $t_n=3u_n+8v_n$: IN من n نضع لكل (4 نضع لكل (t_n) متتالية ثابتة.
 - . $\left(v_{n}\right)$ و $\left(u_{n}\right)$ ب أستنتج نهاية كل من

www.madariss.fr

تمـريــن 1:

نعتبر المتتالية $\left(u_{n}\right)$ المعرفة كمايلي:

$$u_{n+1} = \frac{5u_n - 1}{u_n + 3}$$
 $u_0 = 2$

$$\left(\forall n \in IN\right)$$
 , $u_n \neq 1$: بين أن (1

$$v_n = \frac{1}{u_n - 1}$$
: نضع IN نکل (2

أ_ بين أن $\left(v_{n}\right)$ متتالية حسابية محددا أساسها وحدها الأول. بين أن $\left(v_{n}\right)$ ثم $\left(v_{n}\right)$ بدلالة $\left(v_{n}\right)$.

تمرين 2:

نعتبر المتتالية (u_n) المعرفة كمايلي:

$$u_{n+1} = \frac{1}{4}u_n + \frac{3}{8}$$
 $u_0 = \frac{2}{3}$

$$(\forall n \in IN), \frac{1}{2} \le u_n \le \frac{2}{3}$$
 : بين بالترجع أن (1

. تناقصية (
$$u_n$$
) تناقصية (2

المتتالية المعرفة كمايلي: (
$$v_n$$
) لتكن

$$(\forall n \in IN)$$
 , $v_n = 3(2u_n - 1)$

أ_ بين أن (v_n) متتالية هندسية محددا أساسها وحدها الأول. ب ب احسب v_n بدلالة u_n ثم استنتج u_n بدلالة v_n . v_n ج – أحسب نهاية u_n).

تمـريــن 3 :

نعتبر المتتالية $\left(u_{n}\right)$ المعرفة كمايلي:

$$u_{n+1} = \sqrt{u_n + 12}$$
 $u_0 = 5$

$$(\forall n \in IN)$$
 $u_{n \geq 4}$: أَنْ نَا (1

$$(u_n)$$
 أدرس رتابة (2

(3) بين أن

$$(\forall n \in IN)$$
 $0 \le u_{n+1} - 4 \le \frac{1}{4}(u_n - 4)$

وأن المتتالية (u_n) متقاربة.

$$(\forall n \in IN) \ u_n - 4 \le \left(\frac{1}{4}\right)^n$$
 : استنتج أن (4

تمرين 4:

و $\left(v_{n}\right)_{n\in IN^{\bullet}}$ متتالیتان معرفتان کما یلي: $\left(u_{n}\right)_{n\in IN^{\bullet}}$

$$v_n = \frac{n}{\sqrt{n^2 + n}} \quad \mathbf{g} \quad u_n = \frac{n}{\sqrt{n^2 + 1}}$$

 $\left(v_{n}
ight)$ و $\left(u_{n}
ight)$ بين أن كلا من المتتاليتين (1

متقاربتان ولهما نفس النهاية.

2) لكل n من • IN نضع

$$v_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}}$$

 $v_n \leq w_n \leq u_n$: IN^{ullet} من n لكل الله المن u_n بين أنه لكل المنتج أن w_n متتالية متقاربة ثم حدد نهايتها.

تمـريــن 5:

و $\left(v_{n}\right)$ متتالیتان معرفتان کما یلي:

$$\begin{cases} v_0 = 12 & \text{o} \\ v_{n+1} = \frac{u_n + 3v_n}{4} \end{cases} \qquad \begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n + 2v_n}{3} \end{cases}$$

 $\mathbf{w}_{n} = \mathbf{v}_{n} - \mathbf{u}_{n}$: IN نضع لكل n نضع لكل

- بين أن (w_n) متتالية هندسية محددا أساسها وحدها الأول.
 - $\lim_{x\to+\infty} w_n \quad \text{im} \quad x\to+\infty \qquad (2)$
- (v_n) متتالیة تزایدیة و u_n) متتالیة تناقصیة.

. ب - أستنتج أن $\left(u_{n}\right)$ و $\left(v_{n}\right)$ متقاربتان

 $t_n=3u_n+8v_n$: IN نضع لكل $t_n=3u_n+8v_n$: الم من $t_n=3u_n+8v_n$: الم متتالية ثابتة.

. $\left(v_{n}\right)$ و $\left(u_{n}\right)$ ب _ أستنتج نهاية كل من

www.madariss.fr